3.377 \(\int \frac{\cos ^{\frac{5}{2}}(c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^3} \, dx\)

Optimal. Leaf size=367 \[ \frac{\left (-5 a^2 A b^3+3 a^4 A b+33 a^3 b^2 B-15 a^5 B-24 a b^4 B+8 A b^5\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^4 d \left (a^2-b^2\right )^2}-\frac{\left (3 a^3 A b+29 a^2 b^2 B-15 a^4 B-9 a A b^3-8 b^4 B\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^3 d \left (a^2-b^2\right )^2}-\frac{a \left (-6 a^2 A b^3+3 a^4 A b+38 a^3 b^2 B-15 a^5 B-35 a b^4 B+15 A b^5\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^4 d (a-b)^2 (a+b)^3}+\frac{a (A b-a B) \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}+\frac{a \left (a^2 A b-5 a^3 B+11 a b^2 B-7 A b^3\right ) \sin (c+d x) \sqrt{\cos (c+d x)}}{4 b^2 d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))} \]

[Out]

-((3*a^3*A*b - 9*a*A*b^3 - 15*a^4*B + 29*a^2*b^2*B - 8*b^4*B)*EllipticE[(c + d*x)/2, 2])/(4*b^3*(a^2 - b^2)^2*
d) + ((3*a^4*A*b - 5*a^2*A*b^3 + 8*A*b^5 - 15*a^5*B + 33*a^3*b^2*B - 24*a*b^4*B)*EllipticF[(c + d*x)/2, 2])/(4
*b^4*(a^2 - b^2)^2*d) - (a*(3*a^4*A*b - 6*a^2*A*b^3 + 15*A*b^5 - 15*a^5*B + 38*a^3*b^2*B - 35*a*b^4*B)*Ellipti
cPi[(2*b)/(a + b), (c + d*x)/2, 2])/(4*(a - b)^2*b^4*(a + b)^3*d) + (a*(A*b - a*B)*Cos[c + d*x]^(3/2)*Sin[c +
d*x])/(2*b*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^2) + (a*(a^2*A*b - 7*A*b^3 - 5*a^3*B + 11*a*b^2*B)*Sqrt[Cos[c +
d*x]]*Sin[c + d*x])/(4*b^2*(a^2 - b^2)^2*d*(a + b*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 1.01286, antiderivative size = 367, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.212, Rules used = {2989, 3047, 3059, 2639, 3002, 2641, 2805} \[ \frac{\left (-5 a^2 A b^3+3 a^4 A b+33 a^3 b^2 B-15 a^5 B-24 a b^4 B+8 A b^5\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^4 d \left (a^2-b^2\right )^2}-\frac{\left (3 a^3 A b+29 a^2 b^2 B-15 a^4 B-9 a A b^3-8 b^4 B\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^3 d \left (a^2-b^2\right )^2}-\frac{a \left (-6 a^2 A b^3+3 a^4 A b+38 a^3 b^2 B-15 a^5 B-35 a b^4 B+15 A b^5\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^4 d (a-b)^2 (a+b)^3}+\frac{a (A b-a B) \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}+\frac{a \left (a^2 A b-5 a^3 B+11 a b^2 B-7 A b^3\right ) \sin (c+d x) \sqrt{\cos (c+d x)}}{4 b^2 d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^(5/2)*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x])^3,x]

[Out]

-((3*a^3*A*b - 9*a*A*b^3 - 15*a^4*B + 29*a^2*b^2*B - 8*b^4*B)*EllipticE[(c + d*x)/2, 2])/(4*b^3*(a^2 - b^2)^2*
d) + ((3*a^4*A*b - 5*a^2*A*b^3 + 8*A*b^5 - 15*a^5*B + 33*a^3*b^2*B - 24*a*b^4*B)*EllipticF[(c + d*x)/2, 2])/(4
*b^4*(a^2 - b^2)^2*d) - (a*(3*a^4*A*b - 6*a^2*A*b^3 + 15*A*b^5 - 15*a^5*B + 38*a^3*b^2*B - 35*a*b^4*B)*Ellipti
cPi[(2*b)/(a + b), (c + d*x)/2, 2])/(4*(a - b)^2*b^4*(a + b)^3*d) + (a*(A*b - a*B)*Cos[c + d*x]^(3/2)*Sin[c +
d*x])/(2*b*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^2) + (a*(a^2*A*b - 7*A*b^3 - 5*a^3*B + 11*a*b^2*B)*Sqrt[Cos[c +
d*x]]*Sin[c + d*x])/(4*b^2*(a^2 - b^2)^2*d*(a + b*Cos[c + d*x]))

Rule 2989

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((b*c - a*d)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)
*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[
e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)*Simp[b*(b*c - a*d)*(B*c - A*d)*(m - 1) + a*d*(a*A*c + b*B*c - (
A*b + a*B)*d)*(n + 1) + (b*(b*d*(B*c - A*d) + a*(A*c*d + B*(c^2 - 2*d^2)))*(n + 1) - a*(b*c - a*d)*(B*c - A*d)
*(n + 2))*Sin[e + f*x] + b*(d*(A*b*c + a*B*c - a*A*d)*(m + n + 1) - b*B*(c^2*m + d^2*(n + 1)))*Sin[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2,
0] && GtQ[m, 1] && LtQ[n, -1]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C - B*c*d + A*d^2)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(
c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + (c
*C - B*d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 1) - a*c*(n + 2))) - C*(b*c*
d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)
))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2,
0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{\cos ^{\frac{5}{2}}(c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^3} \, dx &=\frac{a (A b-a B) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac{\int \frac{\sqrt{\cos (c+d x)} \left (-\frac{3}{2} a (A b-a B)+2 b (A b-a B) \cos (c+d x)+\frac{1}{2} \left (a A b-5 a^2 B+4 b^2 B\right ) \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^2} \, dx}{2 b \left (a^2-b^2\right )}\\ &=\frac{a (A b-a B) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac{a \left (a^2 A b-7 A b^3-5 a^3 B+11 a b^2 B\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{4 b^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac{\int \frac{\frac{1}{4} a \left (a^2 A b-7 A b^3-5 a^3 B+11 a b^2 B\right )+b \left (a^2 A b+2 A b^3+a^3 B-4 a b^2 B\right ) \cos (c+d x)-\frac{1}{4} \left (3 a^3 A b-9 a A b^3-15 a^4 B+29 a^2 b^2 B-8 b^4 B\right ) \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 b^2 \left (a^2-b^2\right )^2}\\ &=\frac{a (A b-a B) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac{a \left (a^2 A b-7 A b^3-5 a^3 B+11 a b^2 B\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{4 b^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}-\frac{\int \frac{-\frac{1}{4} a b \left (a^2 A b-7 A b^3-5 a^3 B+11 a b^2 B\right )-\frac{1}{4} \left (3 a^4 A b-5 a^2 A b^3+8 A b^5-15 a^5 B+33 a^3 b^2 B-24 a b^4 B\right ) \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 b^3 \left (a^2-b^2\right )^2}-\frac{\left (3 a^3 A b-9 a A b^3-15 a^4 B+29 a^2 b^2 B-8 b^4 B\right ) \int \sqrt{\cos (c+d x)} \, dx}{8 b^3 \left (a^2-b^2\right )^2}\\ &=-\frac{\left (3 a^3 A b-9 a A b^3-15 a^4 B+29 a^2 b^2 B-8 b^4 B\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^3 \left (a^2-b^2\right )^2 d}+\frac{a (A b-a B) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac{a \left (a^2 A b-7 A b^3-5 a^3 B+11 a b^2 B\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{4 b^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}-\frac{\left (a \left (3 a^4 A b-6 a^2 A b^3+15 A b^5-15 a^5 B+38 a^3 b^2 B-35 a b^4 B\right )\right ) \int \frac{1}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{8 b^4 \left (a^2-b^2\right )^2}+\frac{\left (3 a^4 A b-5 a^2 A b^3+8 A b^5-15 a^5 B+33 a^3 b^2 B-24 a b^4 B\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{8 b^4 \left (a^2-b^2\right )^2}\\ &=-\frac{\left (3 a^3 A b-9 a A b^3-15 a^4 B+29 a^2 b^2 B-8 b^4 B\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^3 \left (a^2-b^2\right )^2 d}+\frac{\left (3 a^4 A b-5 a^2 A b^3+8 A b^5-15 a^5 B+33 a^3 b^2 B-24 a b^4 B\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^4 \left (a^2-b^2\right )^2 d}-\frac{a \left (3 a^4 A b-6 a^2 A b^3+15 A b^5-15 a^5 B+38 a^3 b^2 B-35 a b^4 B\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{4 (a-b)^2 b^4 (a+b)^3 d}+\frac{a (A b-a B) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac{a \left (a^2 A b-7 A b^3-5 a^3 B+11 a b^2 B\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{4 b^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}\\ \end{align*}

Mathematica [A]  time = 4.6716, size = 394, normalized size = 1.07 \[ \frac{\frac{\frac{\left (-a^3 A b-7 a^2 b^2 B+5 a^4 B-5 a A b^3+8 b^4 B\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}+\frac{8 \left (a^2 A b+a^3 B-4 a b^2 B+2 A b^3\right ) \left ((a+b) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )-a \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{a+b}+\frac{\left (-3 a^3 A b-29 a^2 b^2 B+15 a^4 B+9 a A b^3+8 b^4 B\right ) \sin (c+d x) \left (\left (2 a^2-b^2\right ) \Pi \left (-\frac{b}{a};\left .-\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) F\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )\right )}{a b^2 \sqrt{\sin ^2(c+d x)}}}{(a-b)^2 (a+b)^2}-\frac{2 a \sin (c+d x) \sqrt{\cos (c+d x)} \left (b \left (-3 a^2 A b+7 a^3 B-13 a b^2 B+9 A b^3\right ) \cos (c+d x)+a \left (-a^2 A b+5 a^3 B-11 a b^2 B+7 A b^3\right )\right )}{\left (a^2-b^2\right )^2 (a+b \cos (c+d x))^2}}{8 b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^(5/2)*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x])^3,x]

[Out]

((-2*a*Sqrt[Cos[c + d*x]]*(a*(-(a^2*A*b) + 7*A*b^3 + 5*a^3*B - 11*a*b^2*B) + b*(-3*a^2*A*b + 9*A*b^3 + 7*a^3*B
 - 13*a*b^2*B)*Cos[c + d*x])*Sin[c + d*x])/((a^2 - b^2)^2*(a + b*Cos[c + d*x])^2) + (((-(a^3*A*b) - 5*a*A*b^3
+ 5*a^4*B - 7*a^2*b^2*B + 8*b^4*B)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + (8*(a^2*A*b + 2*A*b^3
+ a^3*B - 4*a*b^2*B)*((a + b)*EllipticF[(c + d*x)/2, 2] - a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]))/(a + b
) + ((-3*a^3*A*b + 9*a*A*b^3 + 15*a^4*B - 29*a^2*b^2*B + 8*b^4*B)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]]
, -1] + 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (2*a^2 - b^2)*EllipticPi[-(b/a), -ArcSin[Sqrt[
Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b^2*Sqrt[Sin[c + d*x]^2]))/((a - b)^2*(a + b)^2))/(8*b^2*d)

________________________________________________________________________________________

Maple [B]  time = 14.966, size = 1977, normalized size = 5.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^3,x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/b^4/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^
2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)
)*b-3*B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a-B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b)+12*a/b^3*(A*b-2*B*a
)/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1
/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+2*a^2/b^4*(3*A*b-4*B*a)*(-1/a*b^2/(a^
2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)-
1/2/a/(a+b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*
x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/2*b/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos
(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2
^(1/2))+1/2*b/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c
)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*
d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ell
ipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(
-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1
/2*c),-2*b/(a-b),2^(1/2)))-2*a^3*(A*b-B*a)/b^4*(-1/2/a*b^2/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)
^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)^2-3/4*b^2*(3*a^2-b^2)/a^2/(a^2-b^2)^2*cos(1/2*d*
x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)-7/8/(a+b)/(a^2-b^
2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^
2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/4/(a+b)/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*
d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2
))*b+3/8/(a+b)/(a^2-b^2)/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/
2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^2-9/8*b/(a^2-b^2)^2*(sin(1/2*d*x+1/
2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF
(cos(1/2*d*x+1/2*c),2^(1/2))+3/8*b^3/a^2/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^
(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9/8*b/(a^2-b^
2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c
)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3/8*b^3/a^2/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(
1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^
(1/2))-15/4*a^2/(a^2-b^2)^2/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+3/2/(a^2-
b^2)^2/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c
)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))-3/4/a^2/(a^2-b^2)^2/(-2*a*b+
2*b^2)*b^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x
+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^
2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac{5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*cos(d*x + c)^(5/2)/(b*cos(d*x + c) + a)^3, x)